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Abstract

©o are determined.
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First, we recall some definitions. Let X be a
normed linear space, and X, an n-dimensional sub-
space of X and 4 a subset of X, then the deviation
E (4; X,) of 4 from X, is defined by

E(4;X,) = ;ségyien){x Ilx—y Il

This deviation provides information on how well A4
may be approximated by elements of X,. However,
another choice of X, might provide a smaller devia-
tion. Thus we consider the possibility of allowing
the n-dimensional subspaces to vary within X. This
idea, introduced by Kolmogorovl . is now referred
to as the n-width, in the sense of Kolmogorov or as
the n-width of 4 in X, which is given by
dn(A4; X) = inf E(4;X,).

If the infimum is attained, then the corresponding X,
is called an optimal subspace.

The calculation of n-widths for various classical
spaces of functions plays an important role in the nu-
merical analysis, computational com plexity of infor-
mation bases  and approximation theory, since this
problem has close relations to many optimal prob-
lems such as e-complexity of integration and approx-
imation, optimal differentiation, and optimal approx-
imate solutions of the classes of operator equations.
The theory of width was proposed by the paper of
Kolmogorov' ', and the exact estimate of the width

on the one dimensional classical Sobolev classes of
smooth functions W;(([ 0, 1] ) in the space L, ([0, 1] )
was determined for p= g= 2. Later the asymptotic
behavior of the same width for 1<{p, ¢g=<<<° was de-

scribed by Tikhomirov' Isma,gilov[ 4 Maiorov 7,

In this paper, the tight order on the n-widths of the classes of multivariate bandlimited functions in L,( E), 1< <

n-width. mutivariate bandlimited function. sampling theorem.

Kashin' ® and so on.

Moreover, in the case of multivariate, Holligl”
investigated the n-width of multivariate Sobolev
classes W; 0, 1% in L, 0, 11%), where the
Sobolev space W; ([0, 1] ") consists of all functions f
such that its generalized derivative Dkf: p' 1/

A A
D 'xi-D s belongs to the Lebesgue space
L, 0. 1] ) foreach A= (X1, - XDy NE Z, A=
d

0. | Al = 2 Ais with norm

i=1
07 Wy = I 07 gy

P
w here

. S
I rgye = 20 Iy

4

Recently, Kudryavtsev'® determined the tight orders
of n-width of W,H' (0, 1]1“) in Lg (0, 1]1%),

where  is a given modulus of continuity.

For more details about the history of n-width of
various classes of functions in different case setting of
computation, see References [2,9~13].

1 Preliminary and main results

The following simple properties of Kolmogorov
width d, is needed in this paper.

Theorem A.'” Let X,+1 be any (n+ 1)-dimen-
sional subspace of a normed linear space X and denote
by AS (X,+1) aball of radius A in X,+1, then

dn (AS (Xyt-1); XD = AL
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Lemma 1.'" a) Let X be a nommed linear space
and 4 &X, then
dn(l(A;X)< dn(A,X)

b) Let X be a normed linear space and B &4 &
X, then
dn(B; X) << dn(4; X).

Let v={ v va -5 vg) € Ri, and let
Ev( ]Rd) be the class of all entire functions of expo-
nential type v. Denote by B, ( RY) the subspace of
E,(R") bounded on R, and write
Bup(RY) == B (RN L,(R"),
1<p<co B,-(R") =B, (R"),
when p=2, and B,,( Rd):PW(vi is the classical

Paley-Wiener space. Since these spaces are very im-
portant in both mathematical theory and engineering

d
applications, Bv.p (R ) has been studied widely (see
Refs. [14~18]).

Supposing that &,={| x;|<<v,, x€R, j=1,
vy d Y, [19
that
Bu,(RD= (£ € L, (R, suppf CAJ.
Hence, Bv.p( Rd) is also called the class of bandlim-

ited functions.

it follows from the Schwarzt Theorem

The well-known W hittaker-Shannon-Kotelni’ kov

sampling theorem''% says that if a function f satisfies

reew, = PWIW, which is the classical one-dimen-

sional Paley-Wiener space, then it can be reconstruct-

ed from its equidistance (regular) samples at the

points xx=kn/v, k€ Z on R, via the formula

fGO= 25 fUa/Wsinae(x— k/v)  x € R,
f=—05

where sinct=1¢ 'sint if 170 and 1if =0, and the
series converges absolutely and uniformly on com pact
sets of the real line R.

Since the sampling theory is one of the most im-
portant mathematical tools used in communication en-
gineering and data processing, it has been generalized

: . . 13182
in many different directions q

. Especially, this
theorem has been generalized to multivariate case by
Wang and Fangl'” using real and harmonic analysis.
They studied the Whittaker-Shannon-Kotel” nikov
d
multivariate sampling theorem in space By., (R ),

< ps<. 29, cand - also  proved,  an _imequality = of

d
M arcinkiewicz type in the space Bv.p (B ). These
results will be used this paper.

d
Theorem B.!'? Let f€B,, ,(R ), 1<p<< g
then

d
(@ fC= 2 fUa/v) || sinew o— kie/ v).
1

reg’ =

In the above equation, thde series on the right

side uniformly converges on R .

(b) Put hj=n/v, j=1,
stant Cp, 4 only depending on p and d, such that

L
||f||p(Rd)< c,,,d[hl---hdz | fCkre/v) ﬂ 7,
reg’

d
where k= (ki, v k) E L, kn/v=Ckg/vi, -
kac/ va).

-y d, there is a con-

d
Theorem C.'"? Let FEB.,(RT), 1<p<cq
then

L
Cp’,d[/’ll ~hy 2 |f(k7t/v) ‘p] r < ||f ||p(Rd>,
ke’
where the constant C,', 4 only depends on p.

We need also two notations of the vectors in
d d
R . Suppose x= (x1, » xa) € R, and let
x' = xi+ ot xan
Ix l=1x H -+ 1lxs

Now we give our main results.

Theorem 1. Let E,.,={f: Il x"f(x) ||p<]Rd>

<1. f€By, (R, = p<c9), mEN, then

— —7 d —m 7
Ch "N < dy(Ey s L,(R )< Crhy" N 7,
) hd}s hOZmin{ h19 ) hd}9
and the constants C1 and C2 only depend on p, and
d.

where = max{ A1,

Moreover, in the case of p=2, we have the fol-
lowing exact estimates.

Theorem 2. If vi= = v; ==n/ h, then for all
Qn— D N<Q2n+ 1% we have

Ay Evmi Lo(RO) =0 "N 4 = G/y) "N 9.

Remark 1. The exact estimate in the case of one
dimension in, Theorem 2 was determined by Jager
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n' ™ (see also Ref. [9]):
d2N—1 (EV, ms Lz(R )): dzN(Ev, ms Lz( R ))
= @/v) "N ",
=1, 2,

2 Proof of main results

The follow ing lemma gives a Parseval ty pe equal-
ity and will be used in the proof of Theorem 2.

d
Lemma 2.!" Let f€B,,,(R ), then

1
Hrn. . I[Tcl/vl--frc/vdz | fCkre/v) |2] :
2R o

Proof. Tt follows from part (a) of Theorem B,
for f€B,,2( Rd), we have

Ef(kﬂ/v)nsmcv,(xj
keg!

flo) = kim/vi).

Let
b (x) = ﬁsincv_,- (x; —
then 4 ( W,;;: @ and
Rd<1>k(t)4>j(t>dt =T/ vy va R

ki/v). Yk €L

ECEy, ms Xanr1?)= P geXinf

GE
f an1¢

[ Zd Ik ;1 1 \k <,r] S e/ v )H sincv; (x; — k/ v;) ”

=gl o

Hence the expansion of f is also an orthogonal repre-

d
sentation for f € By, » (R ). The proof of Lemma 2

is complete.

Proof of Theorem 1. We begin with the upper
estimate. Note that if /€ E,. » then x"f (x) €

d
B,., (R ). Hence from Theorem B (a), we have

X"F(x) = >, Cke/ )" F e/ v)
keg’

d
° | | sincv; (x; —

km/v;),
fx)= Zf(kﬂ/v)Hsmcv, (x;— km/ vp).
ke’
Let
Xy i = span{‘é‘(t); |kj< n ol j=1 -+d},
and

En1f(x)= kZﬂ V‘Z flkm/v)

= d\\nl

° | |1 sincv; (x; —
=

4» and we have

k]ﬁ/Vj)a

then E,— 1f6X(2n71>

“ < _wp Il f— Erlf” RS

VT (R )
= sup . »
HZ[TKJ f(ch/v)Hsincvj(xj—ijc/vj) ‘ )
keZ! =1 p(RD
d . d Z m
For f€B,. ,(R"), we define 2° terms of S, (f) as = dS_/(x .
. <2
S’(f> o %2n.”§n‘k;\/>n ‘”‘16_2/11 |f(lar/v> |p’ Notlng that
i J. i, iq m
r = 17 ) 2d9 Sr (x f) 132\ \kZ n 5211‘;» 15271
especially, when r=29, we write it as i [ ’ ! ¢
Sy (f) = Z ‘Z | f e/ v) 1P, i | fCheme/v) 1P
k n k +n
' ‘ = (nho)""S, (f ),
_ d__
Since 2 | £ Ckre/ v) 17 is the sum of 2¢ terms of r=1 2 L 2)
reg! we obtain
S, (e and 20 | G/ ™| £/ v)1P s the ZdSr(x'”f>> Who)”’"ZdSr(f)- (3)
ez’ <2 w2

sum of 2¢ terms of S (x"f). we have
D vy P Sy = 208 (),
kezd r<2d
D0 ks P ks vy P— Sp0 (™)

e

Com bining Eq. (3) with Theorem B (b), Theorem

C, and Eq. (1) gives
1

s, | P

ECEy. m; Xy 1)< Cisup id—(
S (x"f)
= d J
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< Ci(nhg) ™
Therefore, we have

Aoy By ms Ly (RO < €1 (o) ™. (&)

Let N € N be given, then exists a n € N such
that 2n — D' N<Z (2n + 1)?. Then from Eq.
(4), we have

m

dy By ms L, (RO C1hy"N 7.

Thus we obtain the upper estimates of Theorem 1.

Now we turn to proceed the lower estimate.
Considering a subspace

Mown? = f: f(x) = ‘2 f(kn/v)
k] <n kz <n
. i
° HSil’lCVj (Xj_ ijf/ Vi )9

Jj=1
I < c2<nh>"’}, (5)

where Cx<</ (C,', 4d" Cp, a)s C,, gand Cp, a are the
constants satisfying the inequalities in the part (b) of
Theorem B and Theorem C, respectively, then it is
clear that M, y¢isa 2n—+1 ¥ dimensional sub-

space of L, ( R“). Thus from Theorem C, for f €

M(2n+1)d9 we have
v
Gy a3 2 s 9]
kl <n k <n
Il ||p(]Rd).

Combining the above equation with Eq. (5), we have

{hl hd“Z 2 | fere/ v) Vj]

K ‘k”{n

< C(nh) ' ©
Cp,,d

From Eq. (6) and Theorem C, we obtain
Ix"fGe) Il o <Cpa

p(R)\ hd 2” “{Z\:ﬂ
1
| f ey P

<g" <nh)mcp,d[h1 hg D

\kl I<n

1/
o p
];\ | f e/ v) ]

<d" (i)™ —”—"’%(,”m

=1.
Therefore M, .« SEy s and from Eq. (5),

Theorem A and Lemma 1, when 2n— 1)< N<
2n+1)% we have

dv v ms Ly (RY)

= d(z;ﬁn"ﬂ(Ew ms Lp( ]Rd))
d
> d(Zn) D1 (M(Zn—H)d;Lp(R ))
=) "N ™Y,

Thus we get the lower estimates of Theorem 1 and
the proof of Theorem 1 is complete.

From Lemma 2, using the same methods as in
the proof of Theorem 1, we can prove Theorem 2,
and the details are omitted.
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